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Flows of gas at velocities close to the isentropic and isothermal speeds of 
sound in channels with slowly changing temperature and curved walls are 
considered. The model takes into account the convection nonlinearity re- 

sulting from the cumulative effect of perturbation propagation. It also 

permits the analysis of the arbitrary effect of radiation on the motion of gas. 
The derived nonlinear system of equations defines the flow of gas in chan- 
nels whose transverse optical thickness is of the order of unity. Similar 

equations for quasi-isentropic flows appear in [l]. 

1. Input equations. Let us consider the stationary equilibrium flow of an inviscid 

non-heat-conducting radiative gas in a channel with plane or axial symmetry. The 

channel walls are assumed to be nearly parallel planes or, in the case of axial symm- 
try, to have a nearly cylindrical surface. In the plane case the channels are assumed 
to be symmetric about the plane y = 0. 

We assume that the input of radiation to the internal energy density and 

pressure is small. The motion of such medium is defined by the equations 

g + -& -& yd-'pv = 0 

&I 

Ual 
+vg+$g=o, 

Uaz 
av+vg+f2E=Q 

pT(u$+v$-) +divq=O 

to the 

where p is the pressure, p is the density, 2” is the temperature, s is the entropy of 



786 V. V. Aleksandrov and A. A. Frolova 

gas, 9 is the flux of radiant energy, and u and u are the gas velocity components 
along the lengthwise and transverse coordinates 2 and y,, respectively. In the plane 

and axisymmetric cases d = 1 and d = 2, respectively. 

‘Ihe radiant energy flux is defined by 

4x 

*grad Iv (I, ‘Q, = XV (r) [B, (T) - I, (r, Q)j 

&~~(ehvIkT - 1)-l 

(1.2) 

(1.3) 

where v is the frequency of radiation, r’ is the radius vector of a point, Q is a unit 
vector in the direction of a light ray, XV is the volume absorption coefficient, and 

& is the Pfanck function. 
The equations of state and the dependence of x on p and a 

p = P (P, 47 T = T (p, s), xv = xv b S) (1.4) 

close the system of Eqs. (1. 1) - (1.4). 

Equations (1.1) with allowance for the equation of state (1.4) yield the corollaries [21 

(as2 - u2)&N (S 4 Jg) + (as2-v2)~ -t- (1.5) 
d-i 2_ 1 an 
-va --p21’ Y s ( > z yv fl 

(a~z-~2}~-~v(~+~) + (a~z-v~~~+~va~~ z 

$(gi),(++vgq 

where a, and aT denote the isentropic and isothermal speeds of sound which satisfy 

the relationships [23 .- 

iz$S = u*S + % 
p2T fGS2, e12 = - 

li’ 
Y- 

1 paa ST 

Y 
--L-, T+! 

% 

a, = (3~ / i+3)sflp, UT = (@ / dp)Tii' 

where cp and cv are the specific heats of gas at constant pressure and volume, res- 

pectively. 
Henceforth Eqs. (1.5) will be used in system (1. 1) - (1.4) instead of the first and 

fourth of Eqs. (1. 1). The new system of equations is equivalent to the input one. 
2. Derivation of approximate equations. Let the profile f and temperature T, 

be specified by formulas 

Y = &, + 6LJ (z / L,), T, = T, (1 + E,T,’ (5 I L,f) 

where LX is a characteristic size of the perturbation of wall temperatureor shape,Lv 
is the channel width at inlet, T,, is the temperature of the oncoming stream and 6 and 

EW are small parameters. 
Let functions f and T,’ be of order O(1) for finite values of the argument and 
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let these satisfy at infinity the limiting ~lat~o~hips 

f (-oo) = T,’ (-00) = 0, df(oo)/dz = dT, (oo)/dx = 0 

We shall consider motions of a gas whose speeds a, and @r are clc6e to each other. 

Unperturbed quantities will be denoted by subscripts zero and the perturbed ones by a 

prime. 
We represent the therm~ynamic derivative efP,, as [Z] 

%o = 8, -Vza, 
cVO 

ea<i, &0--1 

The velocity of the oncoming stream is assumed to be close to the isentropic and 

isothermal speed of sound 

uo - a+3 0 = e,s&,& , 0 f.6, - t$‘. = &$.&&=e 

Let us assume that the state of gas in the flow regions differs slightlv from that of 

a uniform stream at temperature ,T,, and velocity uo at inlet. We set ew = E&T 
and write down the first terms of the expansion of unknown functions in asymptotic 

series 

U = 7.&J (1 + EU’), u = 6U*V’, p = po (1 + E&J’), p = p. (1 + ep’) (2.4) 

T =I To (1 + E,ETT’), g = 16E,ET~To4q’ (2.2) 
Iv = B,, + E,ET ToHJv', qy = 43te,eTToH,q,’ 

I wu = y-- 
s 

I, dQ = $- (B,, + ~&TTo~~,w,)), H, = > 
0 4% 

where o is the Stefan-Boltzmann constant and w, the spectral density of radiant 
energy. Substituting expansions (2.2) into the transfer equation (1.3), in the first 

approximation we obtain 
div q’ = x0 (T’ - w’) 

m 

i 

00 

WI = s nv,Hywy’ dv s x,H, dv, w,’ =cI & s I,’ dS1 
0 0 4n 

00 00 

no = 1 ,H,,+ H,dv 

It was shown in F1-J that in the0 case ot a slightly ~homogeneous medium the 
transfer equation can always be approximated by the equation for the effective den- 

sity of radiant energy W’ 

Awl = 3x02 (w’ - T’) (2.3) 

We introduce the dimensionless coordinates a?’ = x / L,, and y” = 3’hcoy, 
and determine the typical optical thicknesses 

7% = 3’ht&, l;g = 3’J%,,L, 

We substitute expansions (2. 1) into the second and third equations of motion (1. 1). 

For the first terms of expansion we obtain 
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P = - l p&J2 I $I&, P’= P &I 654) 
Here and in what follows we omit the primes which denote deviations from ~quilibr~nm 
and, also, the wave in the symbols of dimensionless coordinates. The first of formulas 

( 2.4) is valid for 6r,<l, while the second holds for fi / ‘t, < E and 6s <E. 

When ‘tl -, 1 these inequalities reduce to 6 (( e. When the oncoming stream 

velocity deviates slightly from that of isothermal speed of sound, we have e,e~ < E. 

The substitution of exp~ions (2.1) and (2.2) into EQ~. (1.5) yields 

where 

From the equations of state and the first of formulas (2.4) with E&T < E- we 

have 
(2.6) 

We subiect the small parameters to the following relationships: 

&%, = &Z, == EE,’ = - e,2n~ ~ = - 281 F 
%?wy,~, 

lWl2Q 
(2.7) 

The last two equalities imply that BT, - B,, = 1, Taking into account relation- 

ships (2.7) and Eqs. (2.4) and (2.5) we obtain 

- (u + B,,) g-t ++-l)$=+(w_*) 

Subtracting EQ. (2.9) from (2.8) we have 

du -= 
dX 

-&{w-T)+ (2.10) 

Using dimensionless coordinates we rewrite Eq. (2.3) in the form 
I @ru -- 

2,2 arz 
+(d-~)++(w-F) (2.11) 

Let us consider the bards conditions for the obtained equations. It was shown 

in Cl] that the boundary conditions for EQ. (2.11) are formulated as follows: on an 



On proper transonic flows of radiative gas in channels 789 

ideally black wall at temperature T, ur+(2 / 3xo)dw / & = T while on an adia- 
batic wall L&J I’ an = 0. In these formulas n is a normal tofDrhe wall surface. 

Taking into consideration the shape of the wall we obtain the following conditions 
for the first approximation: for the ideally black and for the adiabatic wall we have, 

respectively, 
y = Ity: w 4 (?‘&dw i 8~ = T, (2.12) 

y = Tg: dw I dy = 0 (2.13) 

The wall satisfies the condition of impermeability 

y = ‘dy: V = 1’(x) [2.14) 

Here and in what follows the prime denotes a derivative with respect to the x-coor- 
dinate. 

Conditions 
y = 0: v = 0, t3wJdy = 0 (2.15) 

are satisfied at the axis or the plane of symmetry. 
When x = _e 00 the radiation is in equilibrium with the gas and the flow is a 

uniform stream 

x=-m: u=v=o, w=T=O 
t= +co: u=const, 2t = 0, w=T=T, 

(2.16) 

In the first approximation the process is defined by the system of Eqs. ( 2.81, (2.9) 
and (2.11) with boundary conditions (2, 12) or (2. 13) and (2. 14)-(2.16). The unknown 

functions V, T, and w depend on two arguments, while the lengthwise velocity U . 
depends only on the x-coordinate, 

Let us consider the inverse problem for the flow of gas in a channel with an ideally 
black wall. For this we assume that functions u (X) and f (3) are known. For the 

determination of functions W, v, T, and T, we then have four equations: (2.81, 
(2.9), (2. ll), and (2.12) with boundary conditions (2. 14)-(2.16). The gas pressure 

p is obtained from formula (2.4) and its density p from formula (2.6). 
Let us determine the dependence of transverse velocity 2, on the lengthwise vel- 

ocity u (x)and on the density of radiant energy w , We multiply (2.8) by ti and 

integrate Eqs. (2.8) and (2.11) with respect to y . We then equate the right-hand 

sides of obtained equalities taking into account condition (2.15) at the axis of sym - 
metry, and obtain 

It follows from the impermeability condition (2.14) that 

(2.18) 
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Parameter It defines the effect of radiation on the motion of gas. When b = 03 
there is no radiation, and from formulas (2. l?), (‘2. 18). and (2. 10) we have 

2; = (Y / d)(u i B,,)dlc. / drt-, I = (zy / %)(u + a~,,) u, u = _ j- (2.10) 

In this case the gas temperature depends only on the x-coordinate, and the trans- 
verse velocity 2, is a linear function of y. Formulas (2. 19) define the flow of gas 

in a hydraulic approximation [3]. 

3,xhe c8se of considerable zz. Let us consider the case when the optical thick- 
ness ‘t, > 1 The transfer equation (2.11) is then of the form 

w-T tw 
Equation (3.1) defines one-dimensional radiation in the transverse direction. Substi- 
tution of the expression for temperature T in Eq. (3.1) into (2. 10) yields 

i?W 

TG= (3.2) 

This equation, which links the density of radiant energy w with the lengthwise velocity 

U I was considered in the one-dimensional linear theory of nonstationary radiation 
transfer in [4,5] for d = 1. The x-coordinate represents there time and the 9 coor- 

dinate the optical thickness, 
When 1;,> 1 formulas (2. 17) and (2. 18) are also simplified 

2: = (y / d)(u. - UJU + (1 / b)dw / dy (3.3) 

I’(4 = bu i dM - U.&L -i- (1 I b)aw (5, T$/) / ay (3.4) 

where U, = - B,, and UT =- BT, denote gas velocities at points where con- 

ditions u (x) =I ay (z)and u (x) = ar (CC) , respectively, are satisfied. Note that 

us - UT = 1. 

We introduce notation 

Ts (% f) = I - r/ 2 (rr/ i d) U (IL - 2U,) (3.5) 

fpT (u, f) f= 1 - I/ 2 (TV I d) zf (u - 2ZLT) 

Using notation (3.5) it becomes possible to express the impermeability condition (3.4) 

in the form 
y-_a: ?I a~ I a9 = bg 

For the density of radiant energy w we have the nonhomogeneous equation (3.2) with 
boundarv conditions 

yzzr r,: aw I ay = bcp,f ; y = 0: aw / ay = 0; 5 = _ m: w = I) (3.6) 

We solve here the inverse problem in which U and f are snecified.functions of 
argument 2 , The substitution W = w - (b / ry) (d + y2 / 2)~’ - (d I’ xl,> (PT 
yields homogeneous boundary conditions and a nonhomogeneous equation for function w 

y-t: ?/ al/t’ / dy = 0; y = 0: aw’ / ijy = 0; 5 =:: _ m: ~~0 (3.7) 
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The first condition (3.6) is obtained from the impermeability condition (3.4), not from 
the energy balance (2.12) at the wall. 

Let us consider the plane case when d = 1. We seek the solution of problem 
(3.7), (3.8) in the form of Fourier series. 

w =+~s+~W,(s)cosaRy, on=: 
(3.9) 

n=l 

The coefficients of W,, (z) satisfy the differential equation 

(1 + a,s)Wn’ + (Ub)SVV, + l/a (b/r&&J,” = 0, n = 0, I, 2... (3.10) 

CO = QyS, c, = (-1y.4 / a 2 n, n>i 

where c, are the Fourier coefficients of function ys. Boundary conditions (3.7) and 

series (3.9) are automatically satisfied. Equations (3.10) have the following solutions: 

w, = --Ilsb~,cp,’ 
I 

wn(x) = (-lr+l r a 2;+, a) 
l/n n 

s cp,“(%) x 
-co 

Reverting to function w we obtain 

The energy balance (2.12) and formulas (3.11) yield the wall temperature r 

Tv, (z) = $ (~8’ + + (PT - bxr? s cp: (E) Q (b, rr,; 5 - %) d% 
I/ --m 

bo = b (1 + (2 / I/z&, + ‘/s~,~) 

(3.12) 

Let us estimate the series appearing in (3.11) for the continuous function cp,“, 
with the use of the mean value theorem 

w, (3) = (- l)n+l 
zfl a ;+ a 2) (Ps# &I) x 

n n 

x 

s [ exp - b (t>i*s) (3 - %)] d% = (- ,>,+r s xu*qGn (&I) 
--oD 



792 V. V. Aleksandrov and A. A. Frolova 

If the sums in (3.11) and (3.12) are small in comparison with the remaining terms, 

then w and T, are related to the lengthwise velocity u and function f by formulas 

W (3, !I) = (b ,’ ry)(l + ya / 2- 7y2 / 6)cp,’ + (1 / zg)cpT 

Tw (4 = (bo i ‘G&‘P~ + (f I ~)cpT 
The sum in (3.11) is small when the velocity profile is smooth(smal1 m)the rad- 

iation effect is small (small b ) and the transverse optical thickness of the channel is 

small (small r v ) 
Let us calculate the gas temperature 

T zz w _ a2w ~=~~Yz--~~~~+~~=+~~~ +a,“) + (3*13) 
‘N, (Jg cos any 

n=1 

and the magnitude of the temperature jump[ Tl,. at the wall 

[T],=T,(x)-T(~,%,)== 

+ 
i 

i++,)rp,‘+2&, \ rps” (E) 91 (h G; x - E) dE 
Aa 

Solution of the inverse problem is completely determined by formulas(3.11) 
and (3.13). 

The inverse problem may be formulated by specifying functions u (x) and J’, (Z). 
To determine f (s)it is necessary to solve the integro-differential equation (3. 12) and, 

then, determine w and T, by formulas (3.11) and (3.13). 
ft is seen from (3.12) that for considerable b the main contribution to T,.is pro- 

vided by the first and third terms. Since considerable values of b correspond to a 
slight effect of radiation on the motion of gas, these terms are associated with isen- 
tropic processes. When b is small the main contribution is provided by the term 

(PT / zy = - u(u -2uT) / 2d i- f / TV, which defines isothermal processes. 

Function T,, (2) at u (m) = 0.5 (1 + th I) and U, = 0.5 is shown in Fig. 1 for 
several values of b. Solid lines relate to a straight wall f (r) = 0, and the dash 
lines to a curved wall with f (z) = - exp (- za)- 
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The distribution of temperature T 

in the channel for a given acceleration 

mode is of interest. In that case it is 

not possible to neglect the series, as was 
done in the determination of T, and IIJ . 
Results of calculations are presented in 
Figs. 2 and 3, where solid lines corre- 
pond to function f = 0 and the dash 
lines to f = - exp (- 37. 

Figure 2 corresponds to the same 

acceleration mode as Fig. 1, viz. 
u (2) = 0.5 (if tb 3) and u, = 0.5, 

while Fig. 3 relates to velocity 
Fig. 1 u (z) = 1.5 (1 + th x) and ug = 2.5. 

In the first case the gas velocity passes only through isentropic speed of sound us and 
in the second case it passes through u I and the isothermal speed of sound UT . The 

wall temperature T TV in Fig. 3 is considerably higher than in Fig. 2. 
Relationship between the wall temperature 2’ 1D and velocity u (I) is shown in Fig, 

4, where curves of function TW are plotted for the following six different modes with 
b=l and f=O . 

1) Acceleration from isentropically supersonic to isentropically supersonic velocity 

u = 0.5 (i + th CC), uI = -0.5, and UT =- 1.5; 

2) acceleration from isentropically subsonic but isothermally supersonic to isen- 
trOpiCally supersonic velocity e = 0.5 (i + th CC), u, = -0.5, and UT = - 0.5; 

3) acceleration from isothermally supersonic but isentropically subsonic to isen- 

tropically subsonic but isothermally supersonic velocity 
-IL = 0.2 (1 + th z), US = 0.5, and UT = - 0.5’ * 

Fig. 2 Fig. 3 
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4) acceleration from isothermally subsonic to isentropically supersonic velocity 
u = 1.5 (1 + th %I, ug = 2.5, and UT = 1.5, 

5) acceleration from isothermally subsonic to isothermal& supersonic but isen- 
tropically subsonic velocity u = 0.5 (1 + tb %), Us = 1.5, and UT = 0.5; and 

6) acceleration from isothermally subsonic to isothermally subsonic velocity 
u = 0.5 (1 + th r), uI = 2.5, and UT = 1.5; 

Fig. 4 Fig. 5 
In Fig. 5 is shown the acceleration of gas by radiation when the wail geometry 

hinders the acceleration f = 0.5 (1 i- th r) , Curves 1 and 3 relate to velocity 
u (2) = 1.5 (1 + th a$, ua = 2.5, while curves 2 and 4 correspond to velocity 

c (2) = (1 i- th 21, ~a = 1.5. Curves 1 and 2 are for parameter b = 1, and curves 
3 and 4 are for b = 0.1 

Let us consider the gas flow in a channel with an adiabatic wall. In this case temp- 
erature Z’, does not appear in the problem. It follows from condition (2.13) and the 
stipulation of impermeability that f and u are linked by the relationship 

f = (xx / 2d) II (u + 2B$ Equation (3.2) with the homogeneous condition (3.6) 
has the solution w = -u. It follows from (3.1) that T = - U, and from (3.3) that 

v = (y / d)(u - u,)u’. The derived solution coincides with solution 
(2.9) for the flow of nonradiative gas. Hence in the first approximation an adiabatic 
wall excludes the. effect of radiation on the flow of gas. 

If the profile f and velocity r& are specified so that equality Ps = f - (ry / 2d) 

(u - 2uJu = 0, is satisfied, a solution coincident with the hydraulic 
approximation is again obtained. 

4. ThecMeof G-i.. Let us consider the inverse problem for the flow of 
gas in a channel with an ideally black wall for z, N 1. Using the procedure app- 
lied in Sect. 3 we obtain the expression for T and the equation for rn 

T=w__+$-~_?+~ (4.1) 

aw i a2 
--z,ax ax 
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Integrating Eqs. (2.8), (2.9) and (2.11) from Cl to, zy and using the impermea- 
bility condition at Y = ry, we obtain 

dw / ay = 9 = bcp,’ - (1 / T,‘)(@, + 9)T)" 

The substitution w = (Ya / 2rr,)lp + wO yields an equation with homogeneous 
boundary conditions 

aut, t c ---- 
&z zr2 &I+ 

We seek the solution of Eq. (4.2) of the form 

wo = Wl (G Y) + wz (4 

For wI (2) from (4.2) we obtain 

Substituting the expressions for 9 and w into (4.3) we obtain 

wa = (d / QPq)s’ + (PT) 

(4.3) 

(4.4) 

Function WI (G Y) satisfies the nonhomogeneous equation with homogeneous 
boundary conditions 

Y = 0: aw, I ap = 0, y = a&: al+ i ay = 0 

We set d = 1 and seek the solution of Eq. (4.5) in the form of Fourier Series 
m 

Wl (G y) = c Win (4 cos %lY 

For WI, we obtain the equation n-1 

wlnmp + (1 I b)wl,” - xxz (1 + un=)wln’ - (~,~a$ I b)wm 
= ( C,T,” I 22,)[$ - (1 I txa)(qf + $ I b)‘l’ 

(4.6) 

from which ar n = 0 havewIo = -l/szV$When n > 1 we use the Fourier trans- 

formation for solving Eq. (4.6). We have 

WI,@)= (-1)“~rl~~~~foC(z--5)d5 

P, (E) = 5” + E” / b - T,~ (1 + ana)g - (a-y~xz / b) 
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The properties of roots Yr, YB, Ys of the cubic equation p, (7) F- 0. 

Yl + Y2 + Y3 = - + 7 ++++*=- 
bfi +a@? 

a,2 ’ 

a,%,% 
Y1YaYs = --jy- 

imply that the real root Yr is positive, while the complex-conjugate roots Yn and Ys 
have negative real parts, Hence [6] 

G (%j = 
i 

- (Ya- Id h-l)s) + (Y3- r3 (Y3-?2) ' E>" t 
exp (Y& w (Y&) 1 ew (v&) - (VI- vz) (I?- Yd 4<0 

Reverting to function UI we obtain 

b ( )( zy 1+ -g - T)q(’ + J$ - (+I&%~) x 
(4.7) w-_ - 

( 
?I=1 

From (2.14) and (2.17) for the wall temperature ! Tl, we have 

T,=~(b~~.‘+~T)-~(l+~)(bcp,‘+cpT)”+ 

G22;d 
-al 

(4.8) 

The integral term in (4.8) can be estimated as was done in Sect. 3. We have 

The gas temperature T and the temperature jump[T],at the wall are obtained, as 

in Sect. 3, from Eqs. (4.11, (4.71, and (4.8). 
Let us consider the flow of gas in a channel with an adiabatic wall. The bcnmd- 

ary conditions for w are 

y=-czy: awra&!=q=o, y=o: aw,ay=o 
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Equation (4.5) for w1 (z, y) with homogeneous boundary conditions and zero right- 

hand side yields a zero solution. Consequently 

w=w(x)=t , 

~=,(,,=+-(1--+$ bf$ >( + w) 

V=Y& 1 +I’.+~& 
Unlike in Sect. 3 the radiation transfer affects the flow of gas in a channel with adia- 

batic wall even in the first approximation when 7, N 1. When 7, + 00 all form- 
ulas in Sect. 4 coincide with corresponding formulas in Sect. 3. 

Authors thank V. N. Koterov for discussing this paper. 
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The nonlinear evolution of small amplitude waves in a viscous heat-con- 
ducting gas at low and high Boltzmann radiation number is investigated on 

the example of the piston problem. 


